
Identifying Performance Bottlenecks on Modern 
Microarchitectures using an Adaptable Probe 

Gorden Griem*, Leonid Oliker*, John Shalf*, and Katherine Yelick*+ 
*Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720 

+Computer Science Division, University of California, 387 Soda Hall #1776, Berkeley, CA 94720 
{ggriem, loliker, jshalf, kayelick}@lbl.gov 

 
 
 
Abstract— The gap between peak performance and 

delivered performance for scientific applications 
running on microprocessor-based systems has grown 
considerably in recent years. The inability to achieve 
the desired performance even on a single processor is 
often attributed to an inadequate memory system, 
but without identification or quantification of a spe-
cific bottleneck.  In this work, we use an adaptable 
probe to isolate application characteristics that cause 
a significant drop in performance, giving application 
programmers and architects information about pos-
sible optimizations.  The probe uses only four pa-
rameters to capture key characteristics of scientific 
workloads: working-set size, computational intensity, 
indirection, and irregularity. We present and com-
pare the results of the probe on four 64-bit high-
performance architectures: Itanium 2, Opteron, 
Power3, and Power4. While all four systems show the 
expected gap between peak and delivered perform-
ance when the most challenging settings of the probe 
are used, the magnitude and point of the perform-
ance drop varies across machines, revealing interest-
ing differences between them. 

Keywords— adaptable probe, microbenchmark, 
sqmat, Itanium 2, Opteron, Power3, Power4, perform-
ance analysis, scientific computing 

I. INTRODUCTION 

There is a growing gap between the peak performance 

of microprocessor-based systems and the delivered per-

formance for scientific computing applications.  This 

gap has raised the importance of developing better 

benchmarking methods to improve performance under-

standing and prediction, while identifying hardware and 

application features that work well or poorly together. 

Benchmarks are typically designed with two competing 

interests in mind – capturing real application workloads 

and identifying specific architectural bottlenecks that 

inhibit the performance. Benchmarking suites like the 

NAS Parallel Benchmarks [12] and the Standard Per-

formance Evaluation Corporation (SPEC) [1] emphasize 

the first goal of representing real applications, but they 

are typically too large to run on simulated architectures 

and are too complex to employ for identification of spe-

cific architectural bottlenecks.  Likewise, the complexity 

of the benchmarks can often end up benchmarking the 

quality of the compiler’s optimizations as much as it 

does the underlying hardware architecture.   At the other 

extreme, microbenchmarks such as STREAM [11] are 

used to measure the performance of a specific feature of 

a given computer architecture. Such synthetic bench-

marks are often easier to optimize so as to minimize the 

dependence on the maturity of the compiler technology.  

However, the simplicity and narrow focus of the micro-

benchmarks often makes it quite difficult to relate to any 

real application code.  Indeed, it is rare that such probes 

offer any predictive value for the performance of full-

fledged scientific application. 

Benchmarks, often present a narrow view of a broad, 

multidimensional parameter space of machine character-



istics. We differentiate a “probe” from a “microbench-

mark” or synthetic benchmark on the basis that the 

benchmark typically offers a single-valued result in or-

der to rank processor performance consecutively – a few 

points of reference in a multidimensional space.  A 

probe, by contrast, is used to explore a continuous, mul-

tidimensional parameter space.  The probe’s parameteri-

zation helps the researcher uncover the peaks and valleys 

in a continuum of performance characteristics and ex-

plore the ambiguities of computer architectural compari-

sons that cannot be captured by a single-valued ranking.  

In this paper, we introduce the sqmat probe [14], 

which attempts to bridge the gap between these compet-

ing requirements.  It maintains the simplicity of a micro-

benchmark while offering four distinct parameters to 

capture different types of application workloads: 

• Working-set size (parameter “N”) 

• Computational intensity (parameter “M”) 

• Indirection (parameter “I”) 

• Irregularity (parameter “S”) 

These parameters can be varied to capture the charac-

teristics of a broad range of scientific applications. The 

working-set-size represents the number of registers 

needed by the innermost loop in the algorithm. The 

computational intensity offers a measure of the density 

of floating point operations in the algorithm, expressed 

as a ratio of the number of floating point operations per-

formed per memory access. Indirection is a binary 

choice that represents accesses of the form a[b[i]] that 

are common in sparse matrix codes. The irregular-

ity/sparseness parameter measures the amount of spatial 

locality in the index vector of an indirect access.  The 

amount of irregularity directly impacts the efficiency of 

the memory subsystem with respect to spatial locality.  

These four parameters are sufficient to give us insight 

into a wide variety of real scientific algorithm imple-

mentations while still retaining the simplicity needed to 

relate the results to specific characteristics of the archi-

tecture.  

 MHz GFlop/s % of peak 
Itanium 2 900 3.543 98.4 % 

Opteron 1800 3.187 88.5 % 
Power 3 375 1.405 93.7 % 
Power 4 1300 3.780 72.7 % 
Table 1: Dense matrix-matrix multiply perform-
ance according to [13] 

Sqmat is based on matrix multiplication and is there-

fore related to the Linpack benchmark and to linear al-

gebra solvers in general.  The Linpack benchmark is 

used to rank the machines of the Top500 supercomputer 

list, although the benchmark reflects only a narrow class 

of large dense linear algebra applications. The results for 

dense matrix-multiply according to [13] for the four ar-

chitectures are shown in Table 1 and can be taken as a 

reference point for the Sqmat performance. 

In contrast, by varying the parameters of Sqmat, one 

can capture the memory system behavior of a more di-

verse set of applications as shown in Table 2. With a 

high computational intensity (M), the benchmark 

matches the characteristics of dense linear solvers that 

can be tiled into matrix-matrix operations (the so-called 

“BLAS-3” operations). For example PARATEC [15] is a 

material science application that performs ab-initio 

quantum-mechanical total energy calculations using 

p

re
 M N CI  
orig:sqmat 

S % 
irreg 

DAXPY 1 1 0.5:0.5 - 0% 

DGEMM 1 4 3.5:3.5 - 0% 
MADCAP 
[17] 

2 4 7.5:7.0 - 0% 

SPMV 1 4 3.5:3.5 1 100% 
Table 2: Sqmat parameters M, N, and S can be 
used to mimic the CI and % of irregular accesses 
of this representative selection of algorithms.
seudopotentials and a plane wave basis set. This code 

lies on BLAS-3 libraries with direct memory address-



ing, thus having a high computational intensity, little 

indirection, and low irregularity. However, not all dense 

linear algebra problems can be tiled in this manner; in-

stead they are organized as dense matrix-vector (BLAS-

2) or vector-vector (BLAS-1) operations, which typi-

cally have only one or two operations on each element. 

This behavior is captured in sqmat by reducing the com-

putational intensity, possibly in combination with a re-

duced working set size (N).  

Indirection, sometimes called scatter/gather style 

memory access, occurs in sparse linear algebra, particle 

methods, and in grid-based applications with irregular 

domain boundaries. Most of these applications have the 

additional problem that access to memory are not con-

tiguous, placing additional stress on memory systems 

that rely on large cache lines to mask memory latency. 

The amount of irregularity varies enormously in prac-

tice. For example, sparse matrices that arise in Finite 

Element applications often contain small dense sub-

blocks, which cause a string of consecutive indexes in an 

indirect access of a sparse matrix-vector product.  An-

other example can be found in GTC -- a magnetic fusion 

code that solves the gyro-averaged Vlasov-Poisson (gy-

rokinetic) system of equations using the particle-in-cell 

(PIC) approach [16].  The PIC method scales O(N) and 

requires calculations of particle motion, therefore this 

application has relatively low computational intensity, 

array indirection, and high irregularity. In both cases, the 

stream of memory accesses may contain sequences of 

contiguous memory accesses broken up by random-

access jumps. 

In this paper, we describe the implementation of the 

sqmat probe and focus on how its four parameters enable 

us to evaluate the behavior of four microprocessors that 

are popular building blocks for current high performance 

machines. The processors are compared on a basis of the 

delivered percentage of peak performance rather than 

absolute performance so as to limit the bias inherent in 

comparisons between different generations of micro-

processor implementations. We evaluate and compare 

the strengths and weaknesses of these architectures and 

show where the performance penalties occur, giving ap-

plication developers valuable hints on where to optimize 

their codes. Future work will focus on correlating sqmat 

parameter sets across a spectrum of scientific applica-

tions with varying computational and memory access 

requirements. 

II. INTRODUCTION TO SQMAT 

In this section we introduce the sqmat benchmark, 

which squares L matrices of size NxN. Each matrix is 

squared M times, i.e., raised to the power M. By varying 

M, the ratio between memory transfers and computation 

can be changed. By varying L, the memory the matrices 

are stored in is varied. So for large L, only small parts of 

the matrices can be stored in cache. In this work, we 

only use values of L large enough so that the matrix-

entry array is several times the biggest cache size.  With 

high probability, this forces the first load of each matrix 

to come from memory rather than from cache – even 

after repeating the benchmark multiple times in an outer 

loop in order to ensure consistent timing.  Therefore, this 

paper does not explore the L parameter space as it is 

merely a machine-dependent constant. 

The matrix entries can be accessed in two ways: Di-

rectly or indirectly. In the direct case, matrices are con-

tinuously stored in memory in row-major order. In the 

indirect case, there is still one block of memory the val-

ues are saved in, but now the parameter S controls the 

number of entries stored contiguously in memory: S en-

tries are stored contiguously, then the next entry is at a 

random position in memory, followed by S-1 entries fol-



lowing directly, and so on. Each entry owns a pointer 

pointing to the location of the value in memory space. 

Varying S varies the ratio of cached and non-cached 

memory accesses. Figure 1 shows an example of the 

memory layout for S=4. 

Squaring the matrices is done in three steps: First, the 

values of one matrix are loaded from memory into regis-

ters. If there are more values than registers, register spills 

will occur. Next, the matrix is squared M times in the 

registers. Finally, the results are written back to memory. 

We use a Java program to generate optimally hand-

unrolled C-code [14], greatly reducing the influence of 

the C-compiler’s code generation and thereby making 

sure that the hardware architecture rather than the com-

piler is benchmarked. The unrolling is not so extreme as 

to cause processor stalls due to the increased number of 

instructions or additional branch-prediction penalties -- 

the innermost loop is only unrolled enough to ensure that 

all available floating-point registers are occupied by op-

erands during each cycle of the loop. If enough registers 

are available on the target machine, several matrices are 

squared at the same time. Since squaring the matrix can-

not be done in situ, an input and output matrix is needed 

for computation, thus a total of 2⋅N2 registers are re-

quired per matrix. 

For direct access, each floating-point value has to be 

loaded and stored. As a double precision floating-point 

value is 8 bytes long [10], it creates 8 bytes memory-

load and 8 bytes memory-store traffic for each value. For 

indirect access, the value and the pointer have to be 

loaded. As we always use 64-bit pointers in 64-bit mode 

(avoiding legacy mode), each entry creates 16 bytes of 

memory-load and 8 bytes of memory-store traffic. 

The sqmat benchmark is simple enough to be executed 

on existing hardware simulators, thereby allowing us to 

obtain performance estimates before the actual hardware 

is built. This topic will be explored in future work. 

We have gathered performance results for the follow-

ing four architectures: The Intel Itanium 2, the AMD 

Opteron, the IBM Power3, and the IBM Power4. 

To allow a comparison between the different architec-

tures, we introduce the algorithmic peak performance 

(AP)-metric. The AP is defined as the performance that 

could be achieved on the underlying hardware for a 

given algorithm if all the floating-point units were opti-

mally used. The AP is always equal to or less than the 

machine peak performance (MP). For example, some 

architectures support floating-point multiply-add instruc-

tions (FMA) and only achieve their peak rated flop rate 

when this instruction is used. Thus since a scalar multi-

ply can only use the multiply-part of the instruction and 

not exploit the FMA, the effective maximum flop-rate is 

only half the MP for that processor. In this case, the AP 

would be significantly less than the MP. We therefore 

 

 

 

Figure 1: Example of Indirection for S=4. The numbers 
correspond to the relative position in the memory array. 
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compare results against the AP, since FMA-capable ar-

chitectures would be unreasonably punished when no 

FMA instructions are possible if the MP metric was 

used. Figure 2 shows the algorithmic peak performance 

for the four different architectures and different working-

set sizes. 

 Itanium 
2 

Opteron Power3 Power4 

Clock fre-
quency 

900 MHz 1.4 GHz 375 
MHz 

1.3 GHz 

Number of 
FPU 

2 2  
(1 SSE) 

2 2 

FLOPS/cycle 
(non-FMA 
FLOPS/cycle) 

4 (2) 2 (2) 4 (2) 4 (2) 

FP Registers 
x nbits 

128x64b 16x128b 32x64b 32x64b 

Theoretical 
peak  

3.6 
GFlop/s 

2.8 
GFlop/s 

1.5 
GFlop/s 

5.2 
GFlop/s 

Measured 
matmul peak 
[13] 

3.5GF/s 
98%peak 

2.2GF/s 
88%peak 

1.4GF/s 
94%peak 

3.8GF/s 
73%peak 

Table 3: Floating point architectural characteristics of 
evaluated microprocessors. 

For each NxN matrix used by sqmat, updating an en-

try requires N multiplies and (N-1) adds. Therefore if the 

machine supports FMA (Itanium2, Power3, Power4), the 

AP is 1-1/(2⋅N) of the MP. For architectures not capable 

of executing FMAs (Opteron), the AP is equivalent to 

the MP. 

To measure performance, we use the IBM HPMTool-

kit [3] on the Power3 and Power4 under AIX. For Ita-

nium 2 and Opteron, we use the Performance Applica-

tion Programming Interface (PAPI) [4] under Linux. 

Compilation is performed using the IBM xlc compiler on 

Power3 and Power4, the Portland Group’s pgcc on the 

Opteron, and the Intel ecc on the Itanium 2.  

All measurements were repeated thirty times and di-

vided into ten runs. The normalized standard deviation 

between measurements was generally less than 1%. To 

make sure that operating-system dependent page-faults 

would not affect performance, we discard the first result 

of each run. 

The remainder of this paper is organized as follows: 

Section III describes the hardware architectures, Section 

IV the performance for unit stride, Section V the effects 

of choosing different working set sizes, Section VI 

elaborates on indirection, Section VII shows the effects 

of irregularity, Section VIII the tolerance to irregularity, 

and in Section IX we draw overall conclusions. 

III. DESCRIPTION OF THE UNDERLYING HARDWARE 

In this section, we describe the key components of the 

four processors in our study.   These characteristics are 

shown in Table 3. 

A. Itanium 2: 

The Intel Itanium 2 is a 64-bit processor with four 

floating-point units, two capable of executing one FMA 

per cycle while the other two perform other floating-

point operations like comparisons. Only two floating-

point operations can be executed in parallel [5]. Utilizing 

the maximum two FMAs per cycle using our test system 

running at 900 MHz, results in peak machine perform-

ance of 3.6 GFlop/s. The Itanium has 128 floating-point 

registers, so it is can accommodate matrices up to 8x8 

(eg. N=8) in size and can pack several 4x4 matrices 

(N=4) into registers without spilling. 

B. Opteron: 

The primary floating point horsepower of the AMD 

Opteron comes from its SIMD floating-point unit ac-

cessed via the SSE2 instruction set extensions.  The old 

x87 floating point unit and associated registers have 

been deprecated for all practical purposes.  The Opteron 

can execute two double-precision floating-point opera-

tions per cycle using a single SIMD instruction on oper-

ands packed into 128-bit registers [6]. Therefore, the 



1.4Ghz test system offers peak-performance of 2.8 

GFlop/s. The 16 total 128-bit floating-point registers 

allow us to pack a single 4x4 matrix into registers with-

out spilling (N=4), however the SIMD instructions re-

quire that two variables must be in the same 128-bit reg-

ister to be operated on simultaneously. For a matrix-

multiply, this cannot be guaranteed consistently, thus we 

expect the achieved performance to be significantly less 

than the algorithmic peak performance. 

C. Power3: 

The IBM Power3 processor has two floating-point 

units capable of executing one FMA per cycle [7]. Run-

ning at 375 MHz, this results in a peak-performance of 

1.5 GFlop/s. The processor has 32 floating-point regis-

ters with an additional 32 rename registers that are not 

directly visible to the programmer; so one matrix of size 

4x4 (N=4) fits into the registers. Despite its age and 

meager performance, the Power3 architecture is still 

widely used, most notably in systems that rank in the top 

ten slots of the Top500 supercomputer list [8]. 

D. Power4: 

The IBM Power4 processor has two floating-point 

units capable of executing one FMA per cycle [9]. There 

are two processors on a die, but our experiments focus 

on only one processor. Running at 1.3 GHz, the peak 

performance is 5.2 GFlop/s. Of the 72 floating-point reg-

isters, only 32 are visible. The rest are rename registers 

for storing intermediate asynchronously generated re-

sults. One 4x4 matrix fits into the registers (N=4). 

IV. COMPUTATIONAL INTENSITY WITH UNIT STRIDE: 

In this section, we measure the performance of di-

rectly accessing the matrix entries on the four different 

architectures for N=4. By measuring the achieved per-

formance for a given computational intensity (CI), we 

evaluate how well the architecture hides the load/store 

latency to and from memory. We also measure the CI 

required to achieve 50% of algorithmic peak perform-

ance (lower is better). This indirectly measures the effec-

tive throughput of the processor’s memory subsystem 

under a variety of conditions rather than its theoretical 

peak bandwidth.  An architecture that is able to make 

effective use of its memory and cache subsystem will 

require less computational intensity to achieve 50% of 

algorithmic peak. 

We define CI as the ratio of floating point operations 

to load and store operations. For architecture supporting 

FMA instructions, FMAs are counted as two separate 

operations. Given M⋅(2⋅N-1) operations per matrix entry 

two eight-byte memory operations for the direct access 

(three eight-byte memory operations for the indirect ac-

cess) results in a CI of M⋅(2⋅N-1)/2 for the direct case 

(M⋅(2⋅N-1)/3 in the indirect case).   

We investigate two potential performance bottlenecks 

in this section: For high M we expect performance to 

achieve AP.  Otherwise, the functional units are not be-

ing used effectively.  This is a symptom of an inability to 

find sufficient instruction level parallelism during in-

struction scheduling. 

For small M, especially M=1, sqmat is essentially 

memory bound. Since all architectures are able to over-

lap computation with data transfers, we expect the bot-

tleneck to be almost entirely due to data movement to 

and from registers.  In Figure 3, the initial slope of the 

performance curves is directly proportional to the effec-

tive memory bandwidth while sqmat is still memory 

bound.  As the CI reaches the point where it exceeds the 

effective bytes/flop ratio of the system, it levels off as 

sqmat performance becomes compute-bound – con-

strained by the throughput of the floating-point engine of 

the machine. 
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Figure 3 shows the achieved performance for different 

computational intensity for all four architectures using 

N=4 (note that CI=M⋅7/2). It can clearly be seen that 

Power3 and Itanium 2 are the only architectures achiev-

ing nearly algorithmic peak performance – the Opteron 

and Power4 trailing with 72.2% and 71.2% of AP re-

spectively. 

Whilst the performance is nearly stable for high CI on 

the other architectures, performance continues to im-

prove on Itanium 2 as the CI grows, which together with 

the low performance for small M supports the assump-

tion that floating-point transfers between cache and reg-

isters are a serious performance bottleneck on this plat-

form.  This may be attributed to its inability to store 

floating-point operands in the L1 cache.  

Results also show the Power3 is effective at hiding the 

latency of cache access, while the Opteron and Power4 

do not use all floating-point effectively. For the Opteron, 

this is due to the SIMD nature of the SSE instructions 

that require two floating point operations of the same 

type to be executed per cycle on operands in neighboring 

slots of its 128-bit registers – a constraint that cannot be 

satisfied at all times.  

The Power4 does not have the same SIMD constraint 

as the Opteron, so to first order its superscalar execution 

unit was unable to find enough independent calculations 

to 
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ble 4: Computational intensity (measured in floating 
int operations per memory operation) needed to achieve 
% of algorithmic peak for N=4. 
keep its two superscalar floating point execution units 

sy.  Despite similarities to the Power3 superscalar 

ctional units, the Power4 has much deeper execution 

elines (12 vs. 3 stages in the Power3) and thus putting 

re pressure on the instruction reordering to find in-

uction level parallelism (ILP).  So we theorize that the 

reased pipeline depth is either inhibiting the Power4’s 

lity to find sufficient ILP or is causing it to run short 

the rename registers necessary to support the concur-

t execution of the deeper pipelines of its floating 

int units  

able 4 shows the minimum computational intensity 

essary to achieve 50% of algorithmic peak perform-

e. The Power3 requires the lowest CI while the three 

re recent architectures (Itanium2, Opteron and 

wer4) need more computation to hide the data fetch-

. 

V. WORKING SET SIZE: 

n numerous applications, tiling is used to achieve bet-

 performance – the best-known example being dense 

trix-multiply. In other applications, however, there 

 dependencies that prevent tiling or limit the tile size.  

this section, we measure the effects of choosing dif-

ent working-set sizes on the performance of the four 

cessors.   

n the sqmat benchmark, the parameter N controls the 

rking-set size as it defines the size of the NxN matrix. 

r small N, each matrix will fit into registers. Larger N, 

wever, will cause a register spill to L1 cache (L2 on 
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Figure 4: Achieved vs. Algorithmic Peak performance on 
the Intel Itanium 2 
Itanium). Since each element in the matrix has to be ac-

cessed N times, these register spills will have a dramatic 

impact on performance. 

Performance is measured for N=1, 2, 4, 8, and 16, 

with an expectation that performance will drop when the 

working-set size exceeds the number of registers on a 

given platform. Note that for N=1, the matrix squaring 

degenerates to a scalar multiply.   

We also investigate changes to the CI by varying M. 

For high M, algorithmic peak performance should be 

achieved when all elements are in registers. If register 

spills occur, we can measure the penalty by comparing 

performance with small N at high M. If additional regis-

ters are available, several matrices are squared concur-

rently, filling the pipeline with independent calculations.  

If these concurrent calculations were not executed, per-

formance would suffer greatly. Most notably, even with 

the best result forwarding, only one calculation per cycle 

would be possible for N=1. 

This part of the benchmark allows us to answer a 

number of questions about each machine.  First, does a 

given machine ever reach the algorithmic peak?  We will 

consider as many as 256 matrix squaring operations per-

formed on in-register data, and expect ideal AP for such 

a high CI; otherwise instruction-scheduling problems are 

primarily at fault.  Second, what is the optimal working-

set size for each machine and does it correspond as ex-

pected to the number of available registers? Finally, 

what is the cost of register spilling when the working set 

size is too large to fit in registers? From the hardware 

designers’ perspective, these results quantify the effects 

of the register set size and cache access latency. From 
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Figure 6: Achieved vs. Algorithmic peak performance for 
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the software designers’ perspective, they demonstrate the 

best working-set size, around which algorithms and 

compilers should be designed. 

 

A. Itanium 2 

The Itanium 2 processor cannot store floating-point 

variables in L1 cache but only in L2 cache; therefore, the 

impact of register spills and any failure of the compiler’s 

instruction scheduling to effectively mask the latency of 

register loads is higher than for the other architectures.   

Figure 4 shows the achieved performance for varying 

N and M. For small and medium N, algorithmic peak 

performance is achieved, showing that the Itanium 2 is 

capable of effectively using its hardware resources.   

For high N, the penalty of register spills can clearly be 

seen. However, for high computational intensity, Ita-

nium 2 is still capable of effectively hiding a certain 

number of register spills: N=8  achieves 95.9% for 

M=256). As a result, for high computational intensity, 

the working-set size can be chosen over a broader range 

than on the other evaluated architectures. 

For N=16, only 22.9% of AP is achieved. This effect 

is less pronounced than expected given the 7 cycles pen-

alty to access L2 cache suggests, but still shows that on 

Itanium 2, the working-set size has to be chosen care-

fully to avoid a performance penalty.  

 

B. Opteron 

With 16 128-bit and 8 MMX registers, the Opteron 

only has 40 floating-point double-precision registers. So 

for any N>4, register spills will occur. Furthermore, the 

probability of executing two useful instructions per cycle 

is rather low since the Opteron only allows one SIMD 

instruction per cycle, which is executed on one 128-bit 

register. As a result, achieved performance is signifi-

cantly less than algorithmic peak. 

Figure 5 shows the achieved vs. algorithmic peak per-

formance on Opteron for different N and different M. 

The effects of the SIMD instructions can clearly be seen 

as even in the best case only 76% of AP is attained.  

For the N=16 case (register spills), the performance is 

only 16% of AP. Therefore register spills cause a sig-

nificant slowdown (a factor of approximately five) on 

the Opteron architecture. 

C. Power 3 

With 32 visible registers, register spills will occur on 

Power3 for N>4. Running at the low frequency of 375 

MHz and having a bandwidth of 3.2 GB/s from L1 cache 

and 1.6 GB/s to L1 cache, while returning L1-cache-hits 

in one cycle, we expect the penalty for these spills to be 

small in comparison to the other architectures.  

Figure 6 shows the achieved vs. algorithmic peak per-

formance on the Power3 for varying N and M. For 

N<=4, nearly 100% of algorithmic peak performance is 

achieved for large CI. For bigger N, the effects of regis-

ter spills can be seen, but are moderate even for the 

N=16 case, where 38% of peak performance is achieved. 

Power3 offers the most tolerant behavior of all architec-

tures reviewed in this paper, due partially to its L1 cache 

that is accessible in one cycle. 

D. Power4 

With 32 visible floating-point registers, register spills 

will occur on Power4 for N>4. Having the same band-

width of 3.2 GB/s to L1 cache and 1.6 GB/s from L1 

cache as the Power3, but running at a higher frequency, 

we expect the penalty of these spills to be significantly 

more than for the Power3. 

Figure 7 shows the achieved vs. algorithmic peak per-

formance on the Power4 for varying N and M. Interest-

ingly, the best performance is achieved for N=2 with 



nearly 90% of AP. The N=4 case only achieves 72% of 

AP, which is even more surprising since we checked the 

generated assembly-code and found no visible register 

spills. We theorize that the deeper execution pipelines of 

the Power4 may exhaust rename register resources – 

thereby constraining the amount of instruction level par-

allelism. For N=16, only 22% of AP is achieved, show-

ing that the penalty for register spills is significantly 

higher than on the Power3, but still better than on the 

other architectures. 

VI. INDIRECTION: 

In many applications, data cannot be accessed directly 

but has to be accessed indirectly via pointers. In this sec-

tion, we measure the slowdown caused by adding one 

layer of indirection at a working-set size of N=4, thereby 

evaluating the third performance bottleneck, the effects 

of indirection. 

We chose a model for indirection that mimics the 

compressed-row format of a typical sparse-matrix multi-

ply implementation.  The model we chose offers no di-

rect correspondence to sparse algorithms that employ list 

or tree traversals; however, one can infer some more 

general conclusions by examining the effect of irregular 

access frequency on the peak throughput of these micro-

processors. 
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Figure 8: Slowdown due to Indirection relative to compu-
tational intensity for N=4.  For direct access, the CI is 
M⋅7/2, for indirect access M⋅7/3 

 In our indirect implementation, one continuous block 

of memory is allocated to store the floating-point values, 

while another contiguous block is allocated for the 

pointers. Each floating-point variable owns a pointer, 

with all data accesses to floating-point variables going 

through a level of indirection. Both pointers and values 

are stored in row-major order in memory; the matrices 

are stored continuously in memory. 

The comparison between the direct and indirect im-

plementation shows how well the architectures hide the 

overhead caused by indirect access through computation. 

It can be assumed that the memory-prefetch unit issues 

requests such that data is cache resident by the time it is 

needed. The slowdown can be attributed to two factors. 

As twice the memory load traffic is generated, the mem-

ory bandwidth may be too small to effectively fill the 

cache-lines before they are consumed. Additionally, 

there is instruction overhead caused by first getting the 

pointer and then the value. In theory, an architecture ca-

pable of rescheduling more instructions dynamically 

should be able to reduce the slowdown caused by the 

second factor as pointer calculations and floating-point 

arithmetic are executed in different functional units.  

When comparing the direct and indirect case, we ex-

amine performance for a fixed M. However, the indirect 

case requires pointer access while the direct case does 

not, resulting in different CI for a given M. To circum-

vent this problem, we only use M for comparisons in this 

section, but keep in mind that the CI in the indirect case 

is only 2/3 of the CI of the direct case. 

 Figure 8 shows the slowdown for indirect access 

compared to the direct access for different CI. Opteron, 

Power3 and Power4 behave approximately the same, 

with the penalty being less than 10% for M>8. This 



demonstrates that the bandwidth between cache and 

processor is high enough to deliver both addresses and 

values. On Power3 and Power4, this can be explained by 

the fact that L1 to processor bandwidth is twice as much 

as processor to L1. It can also be seen that the longer 

rescheduling queue of Power4 achieves a better per-

formance than the shorter queue of the Power3. 

 Finally, on the Itanium 2, indirection results in a sig-

nificantly higher penalty even for high computational 

complexities that are very difficult to achieve in real ap-

plications: For M>1, the penalty is a factor of 5.4x, 

while even at M=8, the slowdown remains high at 1.5x. 

These results show that indirection is a significant bot-

tleneck on Itanium 2 for reasons that we’ve thus far been 

unable to completely understand.  We are currently in-

vestigating this issue. 

VII. IRREGULARITY: 

Numerous scientific applications, such as sparse ma-

trix-matrix multiply, have certain irregular patterns in 

their data accesses.  In general, solvers that performs 

arithmetic on spare matrices attempt to improve time-to-

solution by skipping elements that are either zero, or 

otherwise too small to contribute meaningfully to the 

solution.  The most typical sparse matrix representation 

is a row-compressed format where an index array is em-

ployed to skip over the zeros in the source matrix using 

indirect references of the form SourceVec-

tor[IndexArray[I]]. In practice, the access pattern en-

coded in the indirection array appears as a set of con-

tiguous memory accesses, followed by a jump that skips 

over zero elements, then followed by another set of con-

tiguous accesses, and so on.  The size of the jumps is 

typically greater than the size of a cache line while the 

length of the contiguous accesses is entirely problem-

dependent. We therefore introduce the parameter S to 

model these access patterns for problems that exhibit 

varying degrees of irregularity. 

Sets of S floating-point values are stored contiguously 

in memory at random starting positions. Therefore when 

traversing the data linearly the first element is at a ran-

dom position, the next S-1 elements are directly follow-

ing, then the next element is at a random position, and so 

on. The pointers are pre-computed and stored contigu-

ously in memory. The starting address for the S contigu-

ous floating-point values is set to N⋅8⋅S to align the 

memory layout with the cache lines therefore minimiz-

ing unnecessarily splitting elements across multiple 

cache lines.  For an example of the memory layout, refer 

to Figure 1.  For all the shown measurements, we used 

L=100,000 which is mapped into an allocated memory 

space that is double that size, resulting in 25.6MB of 

memory usage for the floating-point variables and 

12.8MB of memory reserved for pointer variables. 

Assuming that the memory-prefetch unit is suffi-

ciently intelligent, the first of S elements in any given 

contiguous block of non-zeros will most likely result in 

cache-misses.  However, due to our cache-line oriented 

data alignment, the next S-1 elements will be fetched 

into cache appropriately. Therefore, by varying S, we 

can change the ratio of cache hits to cache misses. Note 

that performance results are compared with indirect 

memory access where all elements are stored contigu-

ously (denoted as S=∞).  

When S is not a power of 2, we observed performance 

degradation for increasing S due to cache-line misalign-

ment.  Thus we restrict our experiments of S to powers  
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Figure 9: Irregularity on Itanium 2 for N=4 
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Figure 10: Irregularity on Opteron for N=4 

of two. For all architectures, S=1…16 was chosen; 

however, on selected platforms where S>16 resulted in 

significantly different results, we show performance for 

high S (up to 256). By comparing the slowdown between 

decreasing S and S=∞, we measure the architecture’s 

tolerance to cache-misses. This part of the benchmark 

primarily measures memory subsystem throughput. 

Bandwidth to memory, memory access latency and the 

number of outstanding cache misses an architecture can 

effectively handle are all key performance factors in this 

section. 

A. Itanium 2 

As Figure 9 shows, the Itanium 2 performs extremely 

well for irregular access. Even with S=1, the worst 

slowdown (at M=2) is only 3.39 times worse than regu-

lar access, making the Itanium 2 the best evaluated 

architecture for irregularity. For random accesses as high 
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Figure 11: Irregularity on Power3 for N=4  

1

3

5

7

9

11

13

15

1 2 4 8 16 32 64 128 256 512M

sl
ow

do
w

n 
fo

r i
rr

eg
ul

ar
 a

cc
es

s

100% (S=1)
50% (S=2)
25% (S=4)
12.5% (S=8)
6.25% (S=16)
3.13% (S=32)
1.56% (S=64)
0.78% (S=128)
0.39% (S=256)
random accesses

 
Figure 12: Irregularity on Power4 for N=4 



as 12.5% (S=8), the performance degradation for irregu-

lar access is less than 31% even for smallest computa-

tional intensity.  

These results can partly be explained by the fact that 

floating-point variables only get cached in the L2, mak-

ing the cost of cache misses less expensive in compari-

son to other systems. It is also shown that the architec-

ture and/or the compiler instruction scheduler is effective 

at hiding the penalties of cache misses in this situation. 

B. Opteron 

Opteron performs nearly as well as the Itanium 2 for 

totally random accesses, as seen in Figure 10. At M=4, 

the penalty for 100% random access (S=1) is only a fac-

tor of 3.19, compared to 2.99 on the Itanium 2. As the 

frequency of irregular access increases, however, per-

formance improves at a much slower rate than for the 

Itanium 2.  Even at S=128, when only a tiny fraction of 

the elements are out of unit stride (0.78%), the perform-

ance penalty is still up to 25%.  

These results show that the shorter memory access la-

tency enabled by the on-chip memory controller com-

bined with the Opteron’s ability to sustain up to eight 

outstanding cache misses, allows the memory system to 

perform well for irregular data accesses. However, the 

architecture is not as effective as the Itanium2 in hiding 

latency for small numbers of irregular accesses. 

C. Power3 

As seen in Figure 11, the Power3 performs poorly for 

irregular data access. For (M=1, S=1), total random ac-

cesses slow down performance by a factor of more than 

24 compared to linear access; more than six times worse 

compared with the Opteron and Itanium2. Even an ir-

regular access with 256 consecutive accesses in memory 

performs significantly slower than the S=∞ case. 

The poor performance for S=1 can mostly be ex-

plained by the 35 cycle penalty of a cache-miss [8] and 

the fact that the Power3 memory subsystem does not 

allow more than four prefetch streams from memory to 

L1 cache.   

It is also likely that the prefetch engines contribute to 

this slowdown.  The prefetch engines require a long 

stream of contiguous accesses in order to detect a viable 

prefetch stream.  Even a small amount of irregularity can 

confuse these relatively simple hardware units.  When 

the prefetch engines cannot be engaged, the execution 

engine is subjected to the full round-trip memory latency 

as cache lines are loaded on an essentially demand-

driven basis. The compiler can override this behavior 

with explicit prefetch directives, but there is insufficient 

information at compile time to make this choice.   

Results show that the Power3’s memory subsystem is 

the most intolerant of irregularity of the platforms we 

examined.  The Power3 architecture was clearly opti-

mized to handle dense-mode numerical kernels. 

D. Power4 

As can be seen in Figure 12, the cost of irregular ac-

cess is high on the Power4. For (M=1, S-1), the penalty 

for all-random accesses is a factor of 14.8 compared to 

regular accesses (M=1, S=∞). Although performing bet-

ter than the Power3, even S=256 is significantly worse 

than the S=∞ case. 

Given the Power4’s comparatively deep instruction 

reordering capability – able to manage 200 instructions 

in flight per cycle -- one would expect a performance 

comparable to the Opteron.  However, such deep reor-

dering is apparently insufficient to hide the memory la-

tency for this level of memory access irregularity.  

The 512-byte L3 cache line size partially contributes 

to the inefficient memory performance for highly irregu-

lar problems, but it is insufficient to fully explain the 

slowdown for the problems that exhibit a very small 



number of irregular accesses.  It is likely that the hard-

ware detection of prefetch streams is involved in this 

behavior. The Power4’s prefetch units require four con-

tiguous cache line references (64 double words) to ramp 

up to full speed, thereby avoiding many unnecessary 

fetches caused by false predictions. A single indirection 

will cancel that prefetch stream. Thus the hardware is 

“tricked” very easily with only slight irregularity. Future 

work will examine this issue in more detail. 

The Power4 has a “data cache block touch” (dcbt) in-

struction that immediately engage a hardware prefetch 

stream without the ramp-up; however the compiler does 

not have sufficient information to automatically insert 

the dcbt instruction since its benefit depends on the de-

gree of irregularity – a determination that can only be 

made at runtime.  Aggressively inserting the dcbt in-

struction will hurt performance considerably more for 

cases that are highly irregular than it helps for cases that 

less so. This highlights the limitations of relying on 

compile-time analysis to make appropriate instruction 

scheduling decisions. The Power3 and Power4 have ar-

chitectural features that were designed specifically to 

benefit dense mode numerical kernels, but these very 

same features have a deleterious effect on irregu-

lar/sparse mode algorithms. There is clearly a need to 

deliver architectural features that address the needs of 

scientific codes that have both dense and irregular access 

patterns.  

VIII. BALANCE: 

In this section, we use the results of Section VII to de-

scribe the architectural tolerance to irregularity by intro-

ducing two metrics: M50 and S50. 

We ask two questions in regard to architectural toler-

ance for irregularity: (a) how much irregularity can the 

architecture hide at a given computational intensity, and 

(b) how much computation is needed to hide the worst 

possible irregularity (i.e. accessing each entry at a ran-

dom position). 

The answer to (a) is given in the S50 value: Let the 

performance of the indirect unit stride access (S=∞) at a 

given computational intensity be P∞. Let the smallest S 

achieving at least 50% be P∞ (at the same CI) is the S50 

value. Thus the S50 tells us how much irregularity can 

be tolerated by the architecture with a 50% performance 

loss. 

Question (b) is answered by the M50 value: Let the 

performance of the indirect unit stride access (S=∞) at 

the lowest possible computational intensity, i.e. M=1 

(CI=7/3), be P1. The smallest M that achieves 50% of P1 

given all random accesses (S=1) is the M50 value. Thus 

the M50 value tells us how much computational inten-

sity is needed to hide the irregular access to maintain 

50% of performance. 

Figure 13 shows the S50 values for computational in-

tensity for M=1 (CI=7/3≅2.3) and M=8 (CI=56/3≅18.7). 

It can clearly be seen that Itanium 2 performs extremely 

well, tolerating 50% of random memory accesses at a CI 

of 18.7, and showing an architectural example where the 

gap between internal frequency and memory accesses is 

bridged rather successfully.  

The Opteron also performs well -- tolerating 50% of 

random accesses at a CI of 18.7. However, at a low CI of 

2.3, the S50 value is only 6.3%, performing significantly 

worse than the Itanium 2.  

Power 4 only tolerates one out of 64 random accesses 

at a CI of 2.3 and still needs 16 consecutive elements for 

a CI of 18.7. This is far worse than both Itanium 2 and 

Opteron. These results are consistent with the Power4’s 

prefetch stream policy that requires 64 consecutive word 

requests to engage a stream. For low computational in-

tensity, more than 2% of random accesses result in a 
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Figure 13: S50 values for different CI for N=4. The values 
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50% performance penalty.  Even for a relatively high CI, 

only 6.3% of random accesses are tolerated. 

Power 3 shows the worst performance, with one out 

of 128 elements tolerated for M=1 and one out of 32 

elements tolerated for M=8. In other words: if less than 

1% of memory accesses are not consecutive, the penalty 

of performance on the Power3 can already be more than 

50%! As irregularity of less than 1%, while relevant for 

codes employing dense-mode BLAS-3 cores, is unrealis-

tic for newer scientific applications that are increasingly 

moving towards sparse data representations. 

Figure 14 presents the M50 values. The figure shows a 

similar behavior as the S50 figure, with Itanium 2’s 

M50=4 (CI=9.3), Opteron’s M50=8 (CI=18.7), Power4’s 

M50=32 (CI=74.7), and Power3’s M50=64 (CI=149.3). 

Thus the Power3 needs a computational intensity of 150 

to achieve a reasonable performance.  It is worth noting 

that although the Power4 is running a much higher inter-

nal frequency than the Power3, and subsequently widen-

ing the gap between memory and internal frequency, it 

outperforms the Power3.  However the Power4 still per-

forms far worse than the Itanium 2 or Opteron.  The 

Power3 and Power4’s architectural enhancements to 

benefit dense-mode numerics hurt its sparse mode per-

formance. 

In conclusion, this section showed that the architecture 

of the Itanium 2 is most forgiving for random accesses, 

followed by the Opteron. The Power3 and Power4 need 

huge M50 and S50 values, demonstrating that they are 

more suitable for dense-mode algorithms.  We believe 

that there is a large movement towards sparse represen-

tations as they emphasize time-to-solution over peak 

flop-rate.  However, the computational intensity required 

to gain any advantage in moving to a sparse representa-

tion is dauntingly large for these microarchitectures.  

There is a clear need for architectural enhancements to 

improve efficiency of sparse access patterns in order to 

keep pace with the current state-of-the-art numerical 

solver design trends. 

IX. CONCLUSIONS AND FUTURE WORK 

In this paper, we have introduced a new adjustable 

synthetic benchmark (a “probe”) that measures the per-

formance of a single processor and its memory system. 

With only a few parameters, the benchmark is capable of 

giving an estimate for the runtime of serial codes based 

on their working-set size, computational complexity, and 

the irregularity of their memory access pattern.  The re-

sults are given relative to an algorithmic peak, which 

allows comparisons across different floating-point unit 

implementations as well as different generations of mi-



croprocessor architectures.  

Probes like sqmat complement the capabilities of tra-

ditional benchmarks as tools that enhance understanding 

of performance behavior of scientific codes.  The probe 

allows searches through a continuous parameter space of 

algorithm performance characteristics, thereby support-

ing analysis of system architectural balance and design 

trade-offs for microprocessors.  It also points out trade-

offs that can be made by programmers on these architec-

tures, such as employing large CI to compensate for ir-

regular memory access patterns -- perhaps necessitating 

a move from explicit to implicit solvers. 

It is important to take all of these results in context. 

The results on processors with the highest clock-rates in 

this study indicate that programmers should expect the 

gap between hardware peak and observed performance 

to continue to increase; however the high clock rates 

may still indicate better time-to-solution than the other 

machines.  The decreased efficiency of the Power4 ver-

sus the Power3 despite similar superscalar functional 

unit and instruction set architecture illustrates the effect 

of deeper execution pipelines and the increasing impact 

of memory latency on computational efficiency as clock 

frequencies climb. Even a deep instruction reorder pipe-

line cannot hide the latency incurred by a cache miss 

during irregular accesses.  The Opteron demonstrates 

that lowering the memory latency using an on-board 

memory controller is an effective method to attack this 

problem.  Likewise, the Itanium2 uses a large register set 

and deep explicit prefetch queues to hide this latency.  

Out-of-order instruction processing appears to have 

more limited effectiveness in addressing this problem.  

However, none of these implementation offer a sustain-

able path for improvement as processor core speeds con-

tinue to outstrip reductions in memory subsystem la-

tency.  There is a critical need for future microprocessors 

to add architectural enhancements for addressing the 

needs of applications exhibiting this kind of memory 

access irregularity. 

Our future plans include running the benchmark on 

vector machines, especially the Cray X1, which are op-

timized for irregular memory access. We are also plan-

ning to map performance counter results to performance 

to investigate the correlation between hardware counters 

and achieved performance. Our long-term goal is to iso-

late the architectural bottlenecks that cause the perform-

ance drops by looking at the performance counter re-

sults.  These new tools will greatly assist in evaluating 

system architectures optimized for scientific workloads 

as well as providing a better understanding of code per-

formance on existing architectures. 
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